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1 Introdu
tionThe use of Latent Semanti
 Indexing (LSI) has been proposed for text retrieval in several re
ent works(Deerwester et al., 1990; Dumais, 1991; Hull, 1994; Berry et al., 1995). This te
hnique uses the SingularValue De
omposition (SVD)(Golub and Loan, 1996) to proje
t very high dimensional do
ument and queryve
tors into a low dimensional spa
e. In this new spa
e it is reasoned that the underlying stru
ture of the
olle
tion is revealed thus enhan
ing retrieval performan
e. Furthermore, LSI 
an be alternatively reviewedas a query expansion method (see se
tions 2.2 and 5), so that re
all is generally improved. Experimentsindi
ate both improved retrieval pre
ision and re
all when LSI is adopted (Deerwester et al., 1990; Dumais,1991; Hull, 1994; Berry et al., 1995; B.T. Bartell and Belew, 1995; Zha et al., 1998; Ando and Lee, 2001). LSIalso improves text 
ategorization (Dumais, 1995; Yang, 1999; Baker and M
Callum, 1998) and word sensedisambiguation (S
hutze, 1998). Theoreti
al results (B.T. Bartell and Belew, 1995; Papadimitriou et al.,1998; Ding, 1999; Zha et al., 1998) have also provided some understanding on the e�e
tiveness of LSI.These LSI studies have, however, mostly used relatively small text 
olle
tions and simpli�ed do
umentmodels. In this work we investigate the use of the LSI on a larger do
ument 
olle
tion (TREC). Our initial�nding is that on larger text 
olle
tions, retrieval pre
ision is not enhan
ed be
ause the LSI me
hanism forrepresenting the terms is not suÆ
ient for dealing with the variability in term o

urren
e. We fo
us onthe norm (the magnitudes) of terms and study the term norm distribution in detail. We propose a termnormalization s
heme for LSI whi
h improves retrieval pre
ision on the TREC and NPL text 
olle
tions.In Se
tion 2 we introdu
e the text retrieval 
on
epts and LSI ne
essary for our work. A short des
riptionof our experimental setup is presented in Se
tion 3. Se
tion 4 des
ribes how term o

urren
e variabilitya�e
ts the SVD and then shows how the de
omposition in
uen
es retrieval performan
e. A possible wayof improving SVD-based te
hniques is presented in Se
tion 5 and we 
on
lude in Se
tion 6. A preliminaryversion of this report appeared in (Husbands et al., 2001).2 The Ve
tor Spa
e Model and LSIIn text retrieval (see (Frakes and Baeza-Yates, 1992; Salton and Bu
kley, 1988; Berry et al., 1995) fortreatments of some of the issues), a simple way to represent a 
olle
tion of do
uments is with a term-do
ument matrix X with X(i; j) = L(i; j) �G(i)where L(i; j) is a lo
al weighting and G(i) is a global weighting depending on term i. The lo
al weightdepends on tf(i; j), the number of o

urren
es of term i in do
ument j. In a very simple weighting s
heme,one simply uses X(i; j) = tf(i; j) as the entries of the term-do
ument matrix. However, this s
heme isin
orre
tly dominated by frequent terms.2.1 Term WeightingPerhaps the most 
ommonly used term weighting s
heme is the tf.idf weighting s
heme. This s
heme usesthe standard term frequen
y tf(i; j) as the lo
al weighting, but weighted by the global inverse do
ument2



frequen
y (idf). This s
heme is spe
i�ed byL(i; j) = tf(i; j); G(i) = idf(i) = log2( ndf(i) + 1) (1)where n is total number of do
uments, and df(i) is the do
ument frequen
y of term i, the number ofdo
uments in whi
h term i o

urs. This s
heme gives very frequent terms low weight and assigns largeweight for infrequent (and hopefully more dis
riminating) terms.For 
omparison pursposes we also study the log.entropy weighting s
heme (Dumais, 1991). In thisweighting, the lo
al term weight is the logarithm of the term frequen
y. The global weighting uses theentropy E(i) of term i. This s
heme is spe
i�ed by:L(i; j) = log2(tf(i; j) + 1); G(i) = 1� E(i); E(i) = � mXj=1 pij log2(pij)log2(n) (2)where pij = tf(i;j)Pj tf(i;j) .Queries (over the same set of terms) are similarly represented. The similarity between do
ument ve
-tors (the 
olumns of term-do
ument matri
es) 
an be found by their inner produ
t. This 
orresponds todetermining the number of term mat
hes (weighted by frequen
y) in the respe
tive do
uments. Another
ommonly used similarity measure is the 
osine of the angle between the do
ument ve
tors. This 
an bea
hieved 
omputationally by �rst normalizing (to 1) the 
olumns of the term-do
ument matri
es before
omputing inner produ
ts.In the dis
ussion to follow we will denote by \term mat
hing" the standard retrieval s
heme: for queryq, the relevan
e s
ores for ea
h do
ument form a ve
tor r and is 
omputed as r = XT � q. For ` queriesQ = [q1; q2; � � � ; q`℄, the 
orresponding relevan
e ve
tors R = [r1; r2; � � � ; r`℄ are then 
omputed by:R = XT �Q2.2 LSI and a query expansion interpretationLatent Semanti
 Indexing (LSI, (Deerwester et al., 1990; Berry et al., 1995)) attempts to proje
t term anddo
ument ve
tors into a lower dimensional spa
e spanned by the true \fa
tors" of the 
olle
tion. This usesa trun
ated Singular Value De
omposition (SVD) of the term-do
ument matrix X with m terms and ndo
uments.If X is an m� n matrix, then the SVD of X isX = USV Twhere U is m� n with orthonormal 
olumns, V is n� n with orthonormal 
olumns, and S is diagonal withthe main diagonal entries sorted in de
reasing order. LSI uses a trun
ated SVD of the term-do
ument matrixwhere X is approximated by X � Xk � UkSkV Tkwhere Uk � [u1; u2; : : : ; uk℄ (the �rst k 
olumns of U ), Vk = [v1; v2; : : : ; vk℄, and Sk = diag(s1; s2; : : : ; sk)(the upper left k by k part of S). This gives the best rank k approximation to the original matrix. Now therelevan
e s
ore matrix be
omesR = XTk Q = (UkSkV Tk )TQ = (UTk X)T (UTk Q) (3)3



Uk is the proje
tion operator that proje
ts an n-dimensional do
ument or query into k-dimensional LSIsubspa
e. Note that even if the 
olumns ofX are normalized to 1, the 
olumns ofXTUk are not automati
allynormalized, and so we 
ompute 
osines between the proje
ted do
uments and proje
ted queries.We may also write R = XT (UkUTk q) and investigate an alternative view of LSI. Given a term in q, UkUTk qexpands this term into many other terms. (If we retain all LSI index ve
tors, i.e, set k = m, by a standardlinear algebra theorem, UmUTm = Im, the identity matrix. This implies LSI returns to standard keywordmat
hing, no query expansion.) Thus LSI 
an be alternatively viewed as a query expansion method. Thisexplains why retrieval re
all is improved in LSI. This query expansion interpretation of LSI by approximateword 
o-o

uren
e is important for our modi�
ation of LSI in se
tion 5.In the LSI representation the rows of UkSk are identi�ed as the \proje
ted terms" and the 
olumns ofUTk X = VkSk are identi�ed as the \proje
ted do
uments". 1 Note that the \proje
ted do
uments" aresimple linear 
ombinations of the proje
ted terms (see Se
tion 5).The trun
ated SVD is usually 
omputed by an iterative te
hnique su
h as the Lan
zos method. TheSVDs in this report were 
omputed with the PARPACK software pa
kage (Mas
hho� and Sorensen, 1996)(as well as TRLAN (Wu and Simon, 1999) for veri�
ation). Another popular software pa
kage for 
omputingSVDs is SVDPACK (Berry, 1992).2.3 EvaluationIn response to a query, a text retrieval system returns an ordered list r of the do
uments where r(1) is themost relevant, r(2) is the se
ond most relevant, and so on. Here r is obtained by sorting the relevan
e s
orespreviously de�ned. The standard way to evaluate the performan
e of a system is to obtain these lists onpre-judged queries and 
ompute pre
ision and re
all. At point i, the pre
ision is the number of relevantdo
uments in the �rst i elements of r (denoted by r(1 : i)) divided by i. This is a measure of the \a

ura
y"of the retrieval: the fra
tion of the do
uments returned that are relevant. The re
all is the number ofrelevant do
uments in r(1 : i) divided by the total number of relevant do
uments. This is a measure ofthe \
ompleteness" of the retrieval: the fra
tion of all relevant do
uments returned. For ea
h query thesemeasures are 
omputed at ea
h i from 1 to the number of do
uments. Pre
ision values at �xed re
all levels(typi
ally interpolated to 0, 0.1, 0.2, . . . , 1.0) are noted and then averaged. A sample pre
ision/re
all 
urvefor the MEDLINE test set (with 8847 terms and 1033 do
uments) using term mat
hing and LSI is shown isFigure 1.In pre
ision/re
all terms, higher 
urves are better as they indi
ate a higher per
entage of relevant do
-uments at ea
h re
all level. In the dis
ussion that follows we will be evaluating various algorithms for textretrieval based on their pre
ision/re
all performan
e.2.4 LSI Performan
eExperiments with LSI have primarily used small data sets. The primary reason for this is the 
omplexity(in both time and spa
e) of 
omputing the SVD of large, sparse term-do
ument matri
es. Nevertheless,1There is some disagreement about using UTk , SkUTk , or S�1k UTk as the \proje
ted terms". In this work we use SkUkprimarily be
ause the term-term similarity matrixXXT 
an be de
omposed as US2UT if X = USV T . Hen
e the rows of UkSknaturally 
orrespond to the rows of X (see (Ding, 1999)). 4



early results were en
ouraging. Figure 1 
ompares LSI using with k = 200 to term mat
hing for the smallMEDLINE 
olle
tion. Here IDF weighting was used and the term-do
ument matrix was normalized prior tode
omposition. The 
osine similarity measure was used in both 
ases.
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Figure 1: LSI vs. Term Mat
hing on MEDLINE (tf.idf)Performan
e on very large 
olle
tions is not as good. Figure 2 shows LSI using k = 300 on TREC6(Voorhees and Harman, 1998), a 
olle
tion with 115000 terms and 528155 do
uments. As the �eld has notentirely settled on the optimal k, experiments with di�erent numbers of fa
tors up to 1000 have shownsimilar performan
e. Note that the 
omputational resour
es needed for using more than 1000 fa
tors makethis impra
ti
al for all but the largest super
omputers.In the rest of this paper, we will investigate reasons for this drop in performan
e and attempt to 
hangethe proje
tion pro
ess in order to re
tify this problem. A major fa
tor will be the norm distribution of theproje
ted terms, dis
ussed in Se
tion 4.3 Software UsedFor the experiments in this paper we used the MATLAB*P system (Husbands et al., 1999). MATLAB*Penables users of super
omputers to transparently work on large data sets within Matlab. Through the useof an external server (that stores and operates on data) and Matlab's obje
t oriented features we 
an handledata as though it were \in" Matlab. In this way, we were able to run our experiments in parallel on NERSC'sCray T3E and IBM SP and no 
hanges had to be made when moving from small to large 
olle
tions. Forexample, if A is the term do
ument matrix and Q is a matrix of queries, to investigate LSI we 
an type,5
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Figure 2: LSI vs. Term Mat
hing on TREC6 (tf.idf)[U,S,V℄=svds(X,k); % Perform a trun
ated SVDnewTerms=U*diag(S); % Compute the proje
ted termsnewA=V';newQ=newTerms'*Q; % Get new representation for queries% Use norm
ols for 
osine measure and find the similaritiesS
ores=norm
ols(newA)'*norm
ols(newQ);Computing and graphing pre
ision/re
all 
urves from pre-judged queries also takes pla
e in MATLAB*Pusing simple m-�le s
ripts.4 Term Norms vs. Inverse Do
ument Frequen
yThe norms (lengths) of the rows of UkSk (in addition to their dire
tions) have great in
uen
e on the repre-sentations of the do
uments and queries. As Figure 3 and Table 1 show, there is great variability in termnorm. In this se
tion we will attempt to explain this variability and its e�e
t on retrieval performan
e.Be
ause proje
ted do
uments and queries are simple linear 
ombinations (
.f. Se
tion 2.2) of the proje
tedterms, terms with low norm 
ontribute very little to the representations of do
uments and queries. The 
osinesimilarity measure 
omes into play too late: after the do
uments and queries have been proje
ted. Thus, ifsear
hing for a term that happens to have low norm, the do
uments that 
ontain it will have only a small
omponent of that term and be dominated by other terms making it diÆ
ult for retrieval.Figure 3 shows a histogram of term norms for the TREC 
olle
tion and Figure 4 plots IDF vs. term6
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Figure 3: Histogram of TREC6 (k = 300) term norms (with tf.idf weighting).norm for the NPL (7491 terms and 11429 do
uments) and TREC text 
olle
tions. We see the wide range ofnorms and that the lowest norm terms have the highest IDF weights. This implies that lowest norm termsare those with the lowest frequen
ies in the 
olle
tion.A term with low frequen
y is often important to dis
riminate among relevant do
uments. Therefore, itse�e
t in IR should be magni�ed, and so its weight in IDF is large. However, our experiments indi
ate thatthe 
orre
tion power of IDF is not suÆ
ient.As an example of this, 
onsider the TREC6 query that 
ontains the words \polio, poliomyelitis, disease,world, 
ontrol, post". For this query, the word \polio" is more spe
i�
 than \disease" (like \tennis" is morespe
i�
 than \sports"). The word \polio" has IDF weight 11:75 but norm 0:16 (k=300). The word \disease"has weight 6:17 and a mu
h higher norm of 3:44. It happens that the top do
uments returned for this queryare all about disease eradi
ation e�orts, but for diseases other than polio (malaria, tuber
ulosis, AIDS, et
.).It seems that as far as disease goes, malaria, tuber
ulosis, AIDS are more prevalent in the 
olle
tion whereaspolio is relatively less frequent. If the original intent of the query is to �nd the spe
i�
 disease polio, thesmall norm of polio is not helpful for this goal.Colle
tion k Min norm Max norm Min IDF Max IDFMED 100 1:3e� 2 2:0e+ 0 1:9 10:0NPL 100 2:5e� 3 5:4e+ 0 2:5 13:5TREC6 300 1:5e� 4 1:5e+ 2 1:3 16:4Table 1: Term norms and IDF for text 
olle
tionsThe popular tf.idf global weighting s
heme appears to be inadequate to mitigate the e�e
t of low term7
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Figure 4: IDF and term norm in LSI-spa
e for the NPL (left) and TREC6 (right) 
olle
tions (tf.idf). ForTREC6 terms with norm > 20 (42 in total) were are not displayed.norm. Table 1 shows the range of norms and IDF for a few test 
olle
tions. The lowest term norms aretypi
ally orders of magnitude away from the highest IDF , hinting at IDF's inadequa
y. We 
an thereforesay that the e�e
t of IDF is lost after proje
tion. The situation with entropy term weighting is similar. Theentropy weights have an even smaller range than the IDF weights and so also are unable to 
ompensate forlarge variations in term norm.This situation 
ould be understood in the following way. The o

urren
e probability of a term is approx-imately proportional to the do
ument frequen
y of the term, P (t) / df(t): The norm of t is approximatelyproportional to P (t). Thus, for two terms t1; t2, their norms have a ratio ofn(t1)=n(t2) � df(t1)=df(t2) � 100� 10000whereas the ratio of their IDFs is approximatelylog[N=df(t1)℄=log[N=df(t2)℄ � 10:The magnitudes of these two ratios are given in Table 1. They underly the level of importan
e of thedis
riminanting power of rare words using norm or IDF. Clearly IDF is not enough to amplify the e�e
t ofthese rare words.Be
ause the 
olumns of Uk are s
aled by the singular values, these have a 
ontributing e�e
t on termnorm distribution and the proje
ted do
uments. Figure 5 plots the singular values of the NPL and TREC6
olle
tions. It is interesting to note that after an initial drop the singular values de
ay very slowly over thedisplayed range.5 Normalized LSIIn this se
tion we attempt to remedy the situation by (1) examining how do
uments are represented in LSIspa
e and (2) proposing a normalization to 
ompensate for infrequent terms.8
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olle
tions.In LSI spa
e, the do
uments are represented by 
olumns of UTk X and terms are represented by rows ofUkSk (
olumn ve
tors of SkUTk � [t1; � � � ; tm℄ with tj the jth term). We 
an write UTk X as S�1k (SkUTk )X =S�1k [t1; � � � ; tm℄X:Therefore, ea
h do
ument in LSI spa
e is a linear 
ombination of ft1; � � � ; tmg. For example,the jth do
ument is S�1k mXi=1 
ijti;
ij = X(i; j).As dis
ussed in previous se
tions, idf and entropy are inadequate in 
ompensating for the e�e
ts ofinfrequent terms in (t1; � � � ; tm). Motivated by this we therefore propose to normalize (t1; � � � ; tm),2 i.e., rowsof UkSk as Tk = row-normalized(UkSk) = D�1(UkSk): (4)where D = diag(d1; : : : ; dk) is a diagonal matrix, di = norm of ith row of UkSk. In the normalized LSI, we
ompute the relevan
e s
ores using R = (T Tk X)T (TTk Q); (5)instead of using Eq.3 in stardard LSI,The normalized LSI 
an be alternatively viewed as an improvement to the query expansion interpretationof LSI (see se
tion 2.2). If we use 
osine similarity between words (rows of UkSk) in LSI, the word-word
o-o

urren
e matrix is C = D�1(UkSk)(UkSk)TD�1 = TkTTk :Consider the query ve
tor q. The expanded query is qexpanded = Cq = TkTTk q. If q 
ontains a term ti, thisterm is now expanded to all similar terms through TT T q. If term ti has a small norm, its expanded weightin the query will be almost negligible. In Normalized LSI, we in e�e
t normalize ea
h term in LSI spa
e to1 so that terms with small norm are promoted to be equals.2Throughout this paper we use the L2 norm. Given a ve
tor v, jjvjj2 = pPni=0 v2i . Normalizing v to 1 is a
hieved bymultipli
ation by the 
onstant 1jjvjj2 . 9



The 
omplete Normalized LSI is des
ribed below:� Compute the SVD with k fa
tors Uk; Sk; Vk� Normalize the rows of the proje
ted terms T = D�1UkSk.� Compute the relevan
e s
ore using Eq.(5) (in pra
ti
e to ensure a

ura
y, we 
ompute 
osine betweenrows of XTT and 
olumns of T TQ.)
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Figure 6: Pre
ision-re
all 
urves on TREC6 
olle
tion for term mat
hing, LSI, and NLSI. We use tf.idf(left panel) and log.entropy (right panel) term weighting s
hemes.
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Figure 7: Pre
ision-re
all 
urves on NPL datatset for term mat
hing, LSI, and NLSI. We use tf.idf (left)and log.entropy (right) term weighting s
hemes.The results of using NLSI on the TREC6 are shown in Figure 6 both tf.idf and log.entropyweightings
hemes. NLSI results on NPL are shown in Figure 7. Re-s
aling the proje
ted terms has a positive e�e
t on10



LSI performan
e for the NPL and TREC6 
olle
tions. For NPL, NLSI outperform both term mat
hing andLSI. For TREC6 NLSI improves upon standard LSI, but still fall short of term mat
hing. We also appliedNLSI on MED, where NLSI performan
e is not as good as LSI.6 Con
lusionsLSI proje
ts the do
uments of a 
olle
tion into a lower dimensional spa
e in order to improve retrievalperforman
e. This work examines the properties of SVD-based proje
tions in order to determine whetherthey agree with our intuition about IR 
on
epts. The lower dimensionality of the spa
e is intuitively desirable;terms that are related \should" be brought 
loser together (the 
luster hypothesis). However, we also seethat in LSI representation of words, rare terms (with low norm) are not adequately weighted, sometimesresulting in poor retrieval performan
e. We proposed a LSI normalization s
heme based on query expansioninterpretation of LSI. The normalized LSI partially 
ompensated this inadequa
y and resulting in betterretrieval pre
ision on NPL and TREC.A
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